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In multiphase flows thin films are often encountered when fluid masses collide. These films can become
very thin and in direct numerical simulations (DNS) it is often impractical to resolve their thickness fully,
even with adaptive grid refining. Here we examine the collision of a fluid drop with a wall and develop a
multiscale approach to compute the flow in the film between the drop and the wall. By using a semi-ana-
lytical model for the flow in the film we capture the evolution of films thinner than the grid spacing rea-
sonably well.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In spite of the rapid progress in direct numerical simulations
(DNS) of complex multiphase flows, real systems provide chal-
lenges that still limit the range of situations that can be simulated,
even when we limit our studies to systems well described by con-
tinuum theories. The problem is, as one might expect, one of scale.
Generally the smallest length-scale of the flow has to be resolved
by O(10) grid points, and as the number of available grid points in-
creases, the range of scales that can be resolved increases. Current
computer power makes it possible to simulate two-fluid systems in
domains resolved by several hundred grid points in each spatial
direction (for thousands of time steps) and simulations of systems
resolved by over 10003, or billion grid points, are on the horizon.
Simulations of that size obviously offer the opportunities to cap-
ture flows whose scales span over two orders to magnitude. This
is, however, often not enough. Starting with simulations where
what we might call the ‘‘dominant small-scales” (see below) are
fully resolved, it is frequently found that multiphase flows also
can generate much smaller features, consisting of very thin films,
filaments, and drops. Frequently there is a clear separation of
scales between these ‘‘features” and the rest of the flow; usually
inertia effects are relatively small for the local evolution at the
smallest scales; and in isolation these features are often well de-
scribed by analytical models. While these features can, in principle,
be captured by local, adaptive, grid refinement, doing so increases
the complexity of the computations significantly and usually re-
ll rights reserved.

.com (S. Thomas).
sults in greatly increased computational time. Furthermore, since
the refinement has to be done in stages, such that the size of adja-
cent control volumes only differs by a factor of two or so, there are
practical limits on how much refinement is possible without using
up all the available grid resolution at the smallest scale. Here we
suggest a different approach and develop a semi-analytical subgrid
model for the flow in a thin film between a drop and wall.

The ‘‘dominant small-scale” in many multiphase systems is set
by the balance of surface tension, viscosity and inertia. For the
breakup of a jet, for example, this scale determines the average
droplet size. In most cases this scale corresponds to roughly where
the appropriately chosen nondimensional numbers, such as We-
ber, Capillary, Ohnesorge, and Reynolds, are O(1) (and the key
word here is obviously ‘‘appropriately”). Unfortunately, however,
this is often not the only length-scale that exists and frequently
the flow also has much smaller features. Consider, for example,
the relatively tame problem of a collision of two droplets that
are a few hundred micrometers in diameters. As the drops collide,
they deform and trap air in a thin film between them. The air
drains out of the film and if the drops stay in contact long enough,
the film ruptures. It is, however, generally believed that the film
thickness must get down to just about few hundred Angstroms be-
fore it ruptures. 100 A = 10 nm = 0.01 lm, so if the drops are
500 lm in diameter, the range of scales, from the thickness of
the film to the diameter of the drop is O(104).

In many cases viscous effects dominate over inertia, and surface
tension effects are sufficiently strong to keep the geometry simple.
Thus, the flow can often be described analytically and by using the
analytical solution it is possible to avoid resolving the small-scale
feature. This approach is perhaps best demonstrated by the
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Fig. 1. The motion of a drop falling down a wall with a 45 deg slope, computed
using three different resolutions as described in the text. The thick line is fully
converged results computed on two fine stretched grids. The results shown by a
thin line are computed on a coarse uniform grid. Here, Eo = 7.955, Oh = 0.1414, and
r = m = 10.
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point-particle approximations. For drops much smaller than the
smallest flow scales several investigators have carried out simula-
tions where the flow away from the drops is fully resolved but the
drops are approximated as point-particles. In the limit of small
Reynolds number the drag on the drop can be found analytically
and at larger Reynolds numbers the force can often be included
using empirical correlations. While adaptive grid refinement could
in some cases also be used to capture such small-scale features, the
difference in scale often makes that approach impractical. Simula-
tions of multiphase flows containing small bubbles, drops or parti-
cles modeled as point-particles go back many years (see Chapter 9
in Prosperetti and Tryggvason, 2007, for a review), but here we are
concerned with situations where such models are used in simula-
tions where ‘‘most” of the flow is captured fully using DNS. Exam-
ples include the computations of bubbles in slurry bubble reactors
by Deen et al. (2004), where small catalytic particles are included
as point-particles and simulations of atomization where very small
droplets are replaced by point-particles (Tomar et al., 2009). Thin
films offer another obvious opportunity to include analytical (or
quasi-analytical) models of small-scale features. Studies of thin
films have a long history and model equations have been devel-
oped for a wide range of conditions but so far little has been done
to incorporate these models into simulations of the larger scale
motion. See, however, the study of Davis et al. (1989) where a thin
film model was coupled with a boundary integral computation to
examine the collision of drops, as well as the microlayer model
for nucleate boiling introduced by Son and Dhir (1998).

The importance of capturing the evolution of thin films near a so-
lid wall accurately is best introduced by an example. Fig. 1 shows a
simulation of a drop immersed in a less viscous fluid, released above
a sloping wall. The drop density and viscosity are ten times higher
than the ambient fluid and the slope of the wall is 45 deg, so the com-
ponents of the gravity vector perpendicular and parallel to the wall
are equal. The properties of the fluids and the computational setup
are given in Section 4. The figure shows five frames from the simula-
tion, starting with the initial conditions. The drop falls onto the wall
and then slides along it, riding on a thin lubricating layer of the ambi-
ent fluid. The drop motion has been computed using three different
grid resolutions, with 64, 128, and 192 grid points across the vertical
dimension of a domain that is twice the drop diameter. The 64 grid
has evenly spaced grid points, but for the finer grids the points are
unevenly spaced in the vertical direction in such a way that the res-
olution near the wall is almost six times as fine as near the top of the
domain. The generation of the unevenly spaced grid is a two step
process: first we set the grid spacing to be uniform for the bottom
one-third of the domain and increasing linearly from there to the
top boundary. In the second step we apply a simple Laplacian
smoothing several times to make the expansion more gradual. The
minimum grid size, near the bottom wall, was 0.003348 for the
128 grid and 0.002232 for the 192 grid. The results from the two fin-
est resolutions are identical, suggesting that both the drop and the
lubrication film are fully resolved. Details of the flow in the film
are shown in Fig. 2, where the velocity in a small section of the film
is shown at the same time as in frame three in Fig. 1. The results are
from the computation using the finest grid and there are about eight
grid points across the film, showing the linear velocity profile clearly.
For the drop resolved on the coarsest grid there is no grid point in the
thin film. The grid spacing used to resolve the flow in the thin film is
much higher then what is needed to resolve the drop itself. We have
repeated this simulation using a full-slip wall, where resolving the
film fully is not critical, and find that the drop motion is essentially
fully converged on a grid with only half the number of points used
for the coarsest grid. For a solid, no-slip wall, the outcome of a sim-
ulation with too few grid points in the film is very different as
Fig. 1 shows. Not only is the drop shape different, but the poorly re-
solved drop lags behind the fully resolved one. In Fig. 3 we plot the
location of the drop centroid versus time (top) and the minimum
thickness of the film (bottom). The drop initially is at rest so it takes
it a little while to accelerate but then it slides down the wall with a
nearly constant velocity, although there is a slight change in the
velocity around time 2.5, presumably corresponding to the change
in shape seen between frame three and four in Fig. 1. The drop with
the poorly resolved film moves significantly slower than the better
resolved ones, as was already seen in Fig. 1. The minimum thickness
of the film is well predicted by the finer stretched grids. The thick-
ness is reduced as the drop falls to the wall, then it rebounds slightly
around time 2 and eventually the film thickness becomes approxi-
mately constant. On the coarse uniform grid, however, the film be-
haves differently. It does not become as thin as on the finer grids
and thus does not rebound nor reach the correct thickness at later
times. We have also run the simulation on a 64 grid-points stretched
grid, with results similar to those on the finer grids and on a 32 grid-
point uniform grid where the differences with the fully resolve solu-
tion become even greater than on the 64 grid-point uniform grid.

These results suggest that it would be possible to obtain the
correct results using relatively coarse grids by refining them near



Fig. 2. The flow in the thin film, corresponding to the third frame in Fig. 1, as computed on the finest grid. The top frame shows the flow near the back of the drop, the middle
frame shows the flow in the middle and the bottom frame shows the flow near the front.
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the wall only. Finer grids do however result in smaller time steps
for explicit codes. This, coupled with the simplicity of the flow in
the film, suggest that there is an opportunity to capture the behav-
ior near the wall using a wall-layer model based on thin-layer or
lubrication theories. The effect of the layer, as obtained in that
way, should be fed into the computations of the rest of the motion
as a modified boundary condition on the bottom wall. In Section 3
we derive such a model.

2. Numerical method and problem setup

The simulations discussed in this paper are done using a front-
tracking/finite-volume method where the governing equations are
solved on a fixed, regular, mesh, covering both the ambient fluid
and the drop. The interface is marked by connected marker points
that are advected with the fluid velocity and a marker function,
constructed from the location of the interface, is used to set the
density and viscosity of the different fluids. The marker points
are also used to compute the surface tension. The method has been
used earlier for a large number of simulations of multiphase flows,
and both the code and various validation tests have been described
in detail in several publications, see Tryggvason et al. (2001),
Bunner and Tryggvason (2002), and Esmaeeli and Tryggvason
(2005), for example. For applications to problems involving drops,
see Nobari and Tryggvason (1996) and Han and Tryggvason (2001).

For the situation simulated here, shown in Fig. 1, the governing
nondimensional numbers are the Eörtvös number Eo = Dqgd2/r,
the Ohnesorge number Oh ¼ ld=

ffiffiffiffiffiffiffiffiffiffiffiffi
qddr

p
and the ratios of the densi-

ties r = qd/qo and the viscosities m = ld/lo. Here the subscript d refers
to the drop and o to the ambient fluid, g is the gravity acceleration, q
is the density,Dq = qd � qo,l is the viscosity, r is the surface tension
and d is the drop diameter. The computational domain has a full-slip
top and is periodic in the flow-direction. Its height is two drop diam-
eters and the length is seven drop diameters. We have repeated some
of the simulations in a larger domain and confirmed that the size of
the domain is sufficiently large that it does not influence the results.
Here we only do the computations for two-dimensional domains. As
discussed briefly later, we believe that extending the approach to
three-dimensional flow is relatively straightforward.

3. Modeling the film between a liquid drop and a solid wall

To develop a semi-analytical model of the film trapped between
the drop and the wall, we consider the situation sketched in Fig. 4.
Gravity pushes the drop toward the wall but the fluid in the film
between the drop and the wall takes a finite time to drain so the
drop will not touch the wall. Once the film is thin enough, it may
rupture but we will not allow for that possibility here.

Assuming the film to be nearly flat and two-dimensional, mass
conservation results in the following equation for the thickness of
the film, h:

@h
@t
þ @F
@x
¼ 0; ð1Þ

where

FðxÞ ¼
Z hðxÞ

0
uðx; yÞdy ð2Þ

is the net volume flux in the film at location x.
The momentum equation for the velocity parallel to the wall,

written for a nearly flat two-dimensional film is

qo
@u
@t
þ qo

@u2

@x
¼ �dp

dx
þ lo

@2u
@y2 : ð3Þ

Here we have ignored the effect of surface tension, which could be
taken into account by adding an extra term. Integrating this equa-
tion across the film results in:



Fig. 3. The location of the drop centroid versus time (top) and the minimum
thickness of the film (bottom) for the simulations shown in Fig. 1, computed on two
stretched fine grids and a coarse uniform grid.

Fig. 4. Schematic showing a thin film between the drop and the wall.
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qo
@F
@t
þ qo

@M
@x
¼ �h

dp
dx

� �
f

þ shðxÞ � swall; ð4Þ

where we assume that the pressure gradient is constant across the
film. F(x) is defined by Eq. (2) and the momentum flux is

MðxÞ ¼
Z hðxÞ

0
½uðyÞ�2dy: ð5Þ

To compute the volume flux F and the momentum flux M, we need
to assume a velocity profile u(y). Here we will use the simplest pos-
sibility and take the velocity to be linear, going from zero at the wall
to, Uf, the velocity of the fluid in the drop at h. Thus,

uðyÞ ¼ Uf
y
h

; F ¼
Z h

0
uðyÞdy ¼ Uf

h
2

; M ¼
Z h

0
u2ðyÞdy ¼ U2

f
h
3
;

Substituting into Eqs. (1) and (4), yields

@h
@t
þ 1

2
@

@x
ðhUf Þ ¼ 0;

@

@t
ðhUf Þ þ

2
3
@

@x
ðhU2

f Þ ¼ �
2h
qo

dp
dx

� �
f

;
ð6Þ

where we have used that the shear is constant across the film for a
linear velocity profile so that the viscous shear stresses at the wall
and the top of the film cancel. Notice that the pressure gradient is
assumed to be known (from the solution outside the film). Eqs.
(6) allow us to find the thickness of the film h(x) and the fluid veloc-
ity at the wall Uf(x), as functions of time.

To discretize these equations we introduce the notation q = Ufh.
Using a simple explicit first order time integration method and
upwinding for the flux terms (assuming positive flow), we can
approximate equations (6) by

hnþ1
i ¼ hn

i �
Dt
2h
ðqn

i � qn
i�1Þ

qnþ1
i ¼ qn

i �
2Dt
3h
ððq2=hÞni � ðq2=hÞni�1Þ �

2h
qo

piþ1 � pi�1

2Dx
:

ð7Þ

Here the pressures are given by the solution of the flow inside the
drop, at the top of the film. The linear velocity profile that we have
used is likely to work well for clean fluid interfaces where the drop
surface is mobile. For more complex problems, such as contami-
nated surfaces or surfaces where thermocapillary effect are impor-
tant, it is likely that the velocity profile will have to be more
complex. For more sophisticated thin film models see, for example,
Oron et al. (1997), Diez et al. (2005), and Kondic and Diez (2005).

Given h and Uf, we can find the wall-shear stress in the film, and
by assuming that the stresses are continuous, the shear on the drop
surface is given by

sf ¼ lo
@u
@y
¼ lo

Uf

h
: ð8Þ

To incorporate the dynamics of the thin film into simulations of the
full drop, we assume that the film thickness can be neglected when
simulating the drop; that the drop surface coincides with the wall;
and that the no-slip conditions are replaced by specifying the wall-
shear stress for the portion of the wall where the drop touches it.
The pressure at the wall is used to drive the motion in the film
(when solving Eq. (7)) and the solution of the film equations is used
to give the wall-shear stress where the drop is.

The exact implementation of these equations into a particular
numerical method depends on the specifics of the grid used. In
our current implementation we use the staggered grid shown in
Fig. 4. The velocity is updated at points inside the domain and
the ghost points outside the domain are used to set the boundary
conditions for the velocity. For points where there is no thin film,
the no-slip boundary conditions are enforced by giving the ghost
point a velocity such that a linear interpolation for a point on the
wall results in the correct wall velocity. Thus, the average of the
ghost point velocity and the velocity at the first point inside the do-
main should be equal to the wall velocity:

uðj ¼ 0Þ þ uðj ¼ 1Þ
2

¼ Uw; ð9Þ

where Uw = 0 for a stationary wall. This equation is easily solved for
the velocity at the ghost point, u(j = 0).

For points on the wall, where there is a thin film, it is the wall-
shear that is given (since we assume that sw = sf) and the ghost
point velocity must be set in such a way that the slope of the veloc-
ity profile at the wall, times the drop viscosity, is equal to the wall-
shear:



Fig. 5. Comparison of results from simulations on a coarse grid using the wall-film
model (dashed line), with direct numerical simulations using the coarse grid
without the model (thin line) and the fine stretched grid (thick line) at three times.
The coarse grid results with the film model agree reasonably well with the results
using the fine grid.
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ld
uðj ¼ 1Þ � uðj ¼ 0Þ

Dy
¼ sf : ð10Þ

Knowing the wall-stress we can set the velocity parallel to the wall
at the ghost points by:

uðj ¼ 0Þ ¼ uðj ¼ 1Þ � sf Dy
ld

: ð11Þ

Thus, to recapitulate, the pressure inside the drop, at the wall,
drives the draining of the film through Eq. (7), and given h and Uf

the film model determines the velocity boundary conditions for
the fluid simulations. Notice that for zero wall-stress (or infinitely
high drop viscosity) equation (11) gives full-slip velocity boundary
conditions.

To identify whether a grid point belonging to the fixed grid is
below a thin film or not, we examine the coordinates of all the
front points and for front points that are closer than one grid spac-
ing from the bottom wall, we identify the closest fixed grid points
on the wall as belonging to the thin film. When a new point—that
was not below a film at the previous time step—is identified, the
initial film thickness there is set equal to the grid spacing, Dy,
and the thickness is then evolved using the model described above.
To simplify the programming, we set the film thickness equal to
the grid spacing for all grid points where the thin film model is
not being used. Thus, at the edge of the film, when we need the va-
lue of h at points outside the film to compute derivatives of h at the
last film point, we take this value to be the grid spacing. We have
examined the effect of using a different value (1.2 � Dy and
0.8 � Dy) and found essentially no differences.

The computational procedure is therefore:

1. Identify whether a grid point at a wall belongs to a film or not.
2. For film wall-points, given h and Uf, find the wall-shear sf and

set the ghost velocities by Eq. (11). For points outside the film,
use the no-slip boundary condition (Eq. (9)).

3. Solve the Navier–Stokes equations for the velocity and pressure
at the next time step, using the ghost velocities set above.

4. Integrate equations (7), using the pressure at the wall as com-
puted by solving the Navier–Stokes equations (step 3).

5. Go back to (1).

We note that since the film model is solved at the grid points of
the fixed grid, and not at the front, extending the model to three-
dimensions is straightforward. We simply need to add advection
terms in the other spatial direction (say z) to Eqs. (6) and (7) and
solve another equation for the momentum flux in the z-direction.

4. Tests

To examine how well the theory outlined above works in prac-
tice, we first apply it to the case shown in Figs. 1–3, where we se-
lect the governing parameters in such a way that it is possible to
resolve the flow in the film on a grid that is reasonably fine, with
modest computational effort. In computational units we use,
qd = 2.5, qo = 0.25, ld = 0.05, lo = 0.005, r = 0.1, gx = gy = 1, and
d = 0.5, resulting in Eo = 7.955, Oh = 0.1414, and r = m = 10. Fig. 5
shows the drop at the last three times from Fig. 1, when there is
a significant difference between the drop resolved on the fine
and the coarse grids. We show the fully converged solution from
the stretched finest grid, the results from the coarse uniform grid,
and then the results from the coarse uniform grid with the model
described in the last section used to compute the flow in the film.
Although the model results are not identical to the fully converged
solution, it is clear that the results are much closer to those, than to
the original coarse grid results. This improvement is also seen in
Fig. 6, where we plot the location of the centroid (top) and the min-
imum film thickness (bottom). Here the model results are essen-
tially identical to the fully converged results and much better
than the original results from the coarse grid. The deviation be-
tween the fully resolved results and those on the coarser grid with
the model is likely to be due the simplified nature of the modeling
and the assumption of a linear velocity profile (an inaccurate treat-
ment of the endpoint could also lead to a deviation, but as dis-
cussed earlier, we have checked that this is not likely). As the
grid is refined, the model is activated later and applied to a smaller
area (since it is only activated once the interface is less than a grid
spacing from the wall) and the difference between the fully re-
solved results and those utilizing the model are reduced.

Fig. 7 shows the results of two other tests for different govern-
ing parameters, where we compare the results of fully resolved
simulations with the results from two simulations on a coarse grid,
one with the model and one without. In the top figure the surface
tension is sufficiently large so the drop deformation is smaller than
in the previous case and in the bottom figure the surface tension is
smaller, so the deformation is larger. Specifically, in the top frame
we have Eo = 0.6829 and Oh = 0.0253, and in the bottom frame
Eo = 12.57 and Oh = 0.08. In both cases, r = m = 10. For those cases
the parameters have been selected such that the film remains



Fig. 6. The location of the centroid of the drop (top) and the minimum thickness of
the film near the wall as computed a coarse grid using the wall-film model (dashed
line), with direct numerical simulations using the coarse grid without the model
(thin line) and the fine stretched grid (thick line) at three times. The coarse grid
results with the film model agree reasonably well with the results using the fine
grid.
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relatively thick, so that it can be resolved relatively easily with
non-uniform grid spacing. As for the results presented in Fig. 7,
including the model makes the coarse grid results much closer to
the fully resolved ones than the results for the coarse grid without
the model.

The conditions for the simulation in Figs. 1–3 and 5–7 were se-
lected such that the film between the drop and the wall was rela-
tively thick, and we could therefore fully resolve it on a fine enough
Fig. 7. Comparisons of a nearly spherical (top frame) and a very deformable
(bottom frame) drop impacting on a sloping wall. The density and viscosity ratios
and the slope of the wall are same as in Figs. 5 and 6, but the Eo and Oh are different,
as listed in the text.
grid. The real need for the model is, however, for films that are
much thinner. The film will generally become thinner for both less
and more deformable drops. For less deformable drops less air is
trapped between the drop and the wall and for more deformable
drops the film will have more time to drain. In Fig. 8 and Fig. 9
we have increased the gravity acceleration perpendicular to the
wall by a factor of four so that the slope of the wall is about
14 deg. The viscosity has also been reduced by 20%. Fig. 8 shows re-
sult using the model for a case where the drop is deformable
(r = 0.2) and in Fig. 9 we simulate a drop with ten times higher sur-
face tension that remains nearly spherical. In the top frames we
compare the drop shape as computed on a 64 uniform grid, with
and without the model. In the middle frames we plot the location
of the centroid versus time and in the bottom frames the evolution
of the minimum film thickness is plotted. In both cases we see that
there is a significant difference between the results with and with-
out the model. The drop without the model moves significantly
slower than when the model is used (b) and the film becomes thin-
ner when the model is used (c). Notice that the film becomes con-
siderable thinner than the minimum grid spacing (Dy = 0.0156),
even when the model is not used. Since the film thickness now be-
comes much thinner than in the cases shown in Figs. 1–7, we have
Fig. 8. Motion of a drop computed on a coarse grid with and without the wall-
model (top). Location of the centroid of the drop versus time (middle). The
minimum thickness of the film near the wall (bottom). The thick line denotes
results with the wall-model and the thin line is results without the model.



Fig. 9. Motion of a drop computed on a coarse grid with and without the wall-
model (top). Location of the centroid of the drop versus time (middle). The
minimum thickness of the film near the wall (bottom). The thick line denotes
results with the wall-model and the thin line is results without the model.
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not attempted to do a grid refinement to obtain a fully converged
solution and the purpose of this test is only to show the influence
of using the model. However, given the results of the original test
case, we expect that using the model will get us much closer to the
fully converged solution.
5. Conclusions

We have introduced a method to account for thin films trapped
between a drop and a solid wall in front-tracking simulations of
multifluid flows, without the need for local adaptive grid refine-
ment. The method is based on solving an equation for the evolution
of the film in parallel with computing the fully resolved flow in the
rest of the computational domain. The equations governing the
evolution of the film are based on standard assumptions used for
thin film modeling and use information from the fully resolved
part of the domain to drive the film flow. The results from the thin
film are, in turn, used to modify the wall-boundary conditions for
the fully resolved flow. The model is designed to ‘‘kick-in” only
when needed (when the film thickness becomes smaller than a
grid spacing) and a refinement of the grid used for the fully re-
solved part of the flow will either delete or eliminate the use of
the thin film model automatically. Since the model is activated
once the film is thin enough it is, however, possible that too poor
of a resolution of the flow outside the film will result in the film
never becoming thin enough to activate the model.

For the particular cases examined here, drops moving next to a
wall, we expect the importance of modeling the thin film to de-
pend strongly on the specifics of the situation, including the ratios
of the density and viscosity and the force driving the drops to the
wall. For other situations, such as a bubble sliding along the wall,
where the film is essentially stationary, we would expect the effect
to be small. Although we have derived and tested the thin film
model here for a very specific situation, we expect that the ap-
proach is more general and that it can be extended to other situa-
tions where thin films form.

As we go to smaller and smaller scales, we eventually reach a
point where it is no longer fully justified to assume that the usual
continuum hypothesis is accurate. It is then necessary to either
change the modeling approach completely by, for example, using
molecular simulations or possibly something like the dissipative
particle dynamics approach, or work with modified continuum for-
mulations designed to account for small-scale effects. See Werder
and co-workers (2005) and Nie et al. (2004) for recent attempts
to couple molecular dynamics with continuum simulations.
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